ES Components | A Franchised Distributor and Manufacturer

es components

Tech Talk

Schottky Diode - What Is It?


The Schottky diode (named after the German physicist Walter H. Schottky), also known as Schottky barrier diode or hot-carrier diode, is a semiconductor diode formed by the junction of a semiconductor with a metal. It has a low forward voltage drop and a very fast switching action. The cat's-whisker detectors used in the early days of wireless and metal rectifiers used in early power applications can be considered primitive Schottky diodes.

When sufficient forward voltage is applied, a current flows in the forward direction. A silicon diode has a typical forward voltage of 600–700 mV, while the Schottky's forward voltage is 150–450 mV. This lower forward voltage requirement allows higher switching speeds and better system efficiency.

A metal–semiconductor junction is formed between a metal and a semiconductor, creating a Schottky barrier (instead of a semiconductor–semiconductor junction as in conventional diodes). Typical metals used are molybdenum, platinum, chromium or tungsten, and certain silicides (e.g., palladium silicide and platinum silicide), whereas the semiconductor would typically be n-type silicon. The metal side acts as the anode, and n-type semiconductor acts as the cathode of the diode; meaning conventional current can flow from the metal side to the semiconductor side, but not in the opposite direction. This Schottky barrier results in both very fast switching and low forward voltage drop.

The choice of the combination of the metal and semiconductor determines the forward voltage of the diode. Both n- and p-type semiconductors can develop Schottky barriers. However, the p-type typically has a much lower forward voltage. As the reverse leakage current increases dramatically with lowering the forward voltage, it cannot be too low, so the usually employed range is about 0.5–0.7 V, and p-type semiconductors are employed only rarely. Titanium silicide and other refractory silicides, which are able to withstand the temperatures needed for source/drain annealing in CMOS processes, usually have too low a forward voltage to be useful, so processes using these silicides therefore usually do not offer Schottky diodes.[clarification needed]

With increased doping of the semiconductor, the width of the depletion region drops. Below a certain width, the charge carriers can tunnel through the depletion region. At very high doping levels, the junction does not behave as a rectifier anymore and becomes an ohmic contact. This can be used for the simultaneous formation of ohmic contacts and diodes, as a diode will form between the silicide and lightly doped n-type region, and an ohmic contact will form between the silicide and the heavily doped n- or p-type region. Lightly doped p-type regions pose a problem, as the resulting contact has too high a resistance for a good ohmic contact, but too low a forward voltage and too high a reverse leakage to make a good diode.

As the edges of the Schottky contact are fairly sharp, a high electric field gradient occurs around them, which limits how large the reverse breakdown voltage threshold can be. Various strategies are used, from guard rings to overlaps of metallization to spread out the field gradient. The guard rings consume valuable die area and are used primarily for larger higher-voltage diodes, while overlapping metallization is employed primarily with smaller low-voltage diodes.

Schottky diodes are often used as antisaturation clamps in Schottky transistors. Schottky diodes made from palladium silicide (PdSi)[clarification needed] are excellent due to their lower forward voltage (which has to be lower than the forward voltage of the base-collector junction). The Schottky temperature coefficient is lower than the coefficient of the B–C junction, which limits the use of PdSi at higher temperatures.

For power Schottky diodes, the parasitic resistances of the buried n+ layer and the epitaxial n-type layer become important. The resistance of the epitaxial layer is more important than it is for a transistor, as the current must cross its entire thickness. However, it serves as a distributed ballasting resistor over the entire area of the junction and, under usual conditions, prevents localized thermal runaway.

In comparison with the power p–n diodes the Schottky diodes are less rugged. The junction is direct contact with the thermally sensitive metallization, a Schottky diode can therefore dissipate less power than an equivalent-size p-n counterpart with a deep-buried junction before failing (especially during reverse breakdown). The relative advantage of the lower forward voltage of Schottky diodes is diminished at higher forward currents, where the voltage drop is dominated by the series resistance

The most evident limitations of Schottky diodes are their relatively low reverse voltage ratings, and their relatively high reverse leakage current. For silicon-metal Schottky diodes, the reverse voltage is typically 50 V or less. Some higher-voltage designs are available (200 V is considered a high reverse voltage). Reverse leakage current, since it increases with temperature, leads to a thermal instability issue. This often limits the useful reverse voltage to well below the actual rating.

While higher reverse voltages are achievable, they would present a higher forward voltage, comparable to other types of standard diodes. Such Schottky diodes would have no advantage  unless great switching speed is required.